El hallazgo, publicado este miércoles en la revista Nature, ha sido realizado por un grupo internacional de científicos -entre ellos investigadores del Instituto de Ciencias del Espacio (ICE-CSIC)- y liderado por astrónomos de la Universidad de Curtin (Australia) del Centro Internacional de Investigación Radioastronómica (ICRAR).
Los investigadores sugieren que el nuevo objeto podría ser un magnetar de periodo ultralargo, un tipo raro de estrella con campos magnéticos ultrafuertes que pueden producir potentes estallidos de energía, o una enana blanca magnética, una etapa avanzada en la vida de una estrella similar al Sol, pero ninguno de los dos explica al 100% las características del nuevo objeto.
Y es que hasta hace poco, los magnetares conocidos giraban en periodos de pocos segundos pero el nuevo objeto emite ondas de radio cada 21 minutos, lo que le convierte en el radiomagnetar de periodo más largo detectado jamás.
RED DE RADIOTELESCOPIOS
Los astrónomos descubrieron el objeto utilizando el Murchison Widefield Array (MWA), un radiotelescopio situado en el terreno aborigen Wajarri Yamaji Country, en el interior de Australia Occidental.
El magnetar, denominado GPM J1839-10, está a 15.000 años luz de la Tierra, en la constelación de Scutum.
"Este extraordinario objeto desafía nuestra comprensión de las estrellas de neutrones y los magnetares, que son algunos de los objetos más exóticos y extremos del Universo", afirmó la autora principal, Natasha Hurley-Walker.
El objeto estelar es el segundo de este tipo detectado hasta ahora, después del descubierto en 2021 por un estudiante de la Universidad de Curtin. Aquel objeto (descrito también en Nature en 2022), era una fuente de radio que se repetía cada 18 minutos, que brilló durante tres meses y después desapareció.
"Nos quedamos perplejos, así que empezamos a buscar objetos similares para averiguar si era un hecho aislado o la punta del iceberg", explicó Hurley.
Para ello, en verano de 2022 el equipo escaneó la Vía Láctea utilizando el telescopio del MWA y así dieron con GPM J1839-10, una señal que se repetía cada 21 minutos y que procedía de otra parte diferente del cielo, a más de 15.000 años luz de distancia, en la constelación de Scutum.
UNA RED MUNDIAL DE RADIOTELESCOPIOS
Para estudiarlo mejor, los investigadores recurrieron a telescopios de todo el planeta con los que hicieron un seguimiento del objeto y analizaron sus características empleando diferentes frecuencias y registrando los pulsos en alta resolución temporal.
Entre ellos, usaron tres radiotelescopios CSIRO de Australia, el radiotelescopio MeerKAT de Sudáfrica, el telescopio espacial XMM-Newton y el telescopio Grantecan (GTC) de la isla de La Palma, en las Islas Canarias.
Lo que vieron en GPM J1839-10 no tenía precedentes: una fuente con un fuerte campo magnético que gira produciendo pulsos de hasta 5 minutos de duración.
Pero eso no fue lo más sorprendente, utilizando las coordenadas y características celestes de GPM J1839-10, el equipo revisó los archivos de observación de los principales radiotelescopios del mundo y descubrieron que este objeto lleva activo desde hace, al menos, 33 años.
"Nuestro objeto apareció en los registros del Radiotelescopio Gigante de Ondas Métricas (GMRT) de la India, y el Very Large Array (VLA) de Estados Unidos tenía observaciones que se remontaban a 1988", explicó Hurley.
UN ENIGMA POR DESVELAR
Con los datos de los últimos 30 años, los investigadores han calculado que la fuente apenas se está desacelerando e incluso, según complejos simulaciones realizadas por los científicos del ICE-CSIC, las teorías tienen serios problemas para explicar cómo se puede producir una emisión de radio tan brillante durante tanto tiempo.
"Suponiendo que sea un magnetar, no debería ser posible que este objeto produjera ondas de radio. Pero las estamos viendo. Y no estamos hablando sólo de un pequeño parpadeo de emisión de radio, cada 22 minutos emite un pulso de cinco minutos de energía de longitud de onda de radio, y lleva haciéndolo al menos 33 años. Sea cual sea el mecanismo que lo produce, es extraordinario".
El descubrimiento tiene importantes implicaciones para nuestra comprensión de la física de las estrellas de neutrones y el comportamiento de los campos magnéticos en entornos extremos, y también plantea nuevos interrogantes sobre la formación y evolución de los magnetares y sobre el origen de fenómenos misteriosos como las ráfagas rápidas de radio.
Pero dado que la fuente sigue activa, astrónomos de todo el mundo seguirán estudiándola para comprenderla mejor y desvelar sus secretos.